Austin, P.C., Giardiello, D, van Buuren, S. (2023). Impute‐then‐exclude versus exclude‐then‐impute: Lessons when imputing a variable used both in cohort creation and as an independent variable in the analysis model. Statistics in Medicine, https://doi.org/10.1002/sim.9685
McLernon, D. J., Giardiello, D., Van Calster, B., Wynants, L., van Geloven, N., van Smeden, M., Therneau T., Steyerberg E.W. & topic groups 6 and 8 of the STRATOS Initiative. (2022). Assessing performance and clinical usefulness in prediction models with survival outcomes: Practical guidance for Cox proportional hazards models. Annals of Internal Medicine, https://doi.org/10.7326/M22-0844
van Geloven N., Giardiello, D, Bonneville E. F., Teece L., Ramspek C. L., van Smeeden M., Sneel K. I. E., van Calster B., Pohar-Perme M., Riley R. D., Putter H., & Steyerberg E. W. on behalf of the STRATOS initiative (2022). Validation of prediction models in the presence of competing risks: a guide through modern methods. British Medical Journal, 377:e069249, https://doi.org/10.1136/bmj-2021-069249
Austin, P. C., Putter, H., Giardiello, D., & van Klaveren, D. (2022). Graphical calibration curves and the integrated calibration index (ICI) for competing risk models. Diagnostic and prognostic research, 6(1), 1-22. https://doi.org/10.1186/s41512-021-00114-6
Giardiello, D., Antoniou, A. C., Mariani, L., Easton, D. F., & Steyerberg, E. W. (2020). a response to Ming’s study on machine learning techniques for personalized breast cancer risk prediction. Breast Cancer Research, 22(1), 1-2. https://doi.org/10.1186/s13058-020-1255-4
Giardiello, D., Hooning, M. J., Hauptmann, M., Keeman, R., Heemskerk-Gerritsen, B. A., Becher, H., … & Schmidt, M. K. (2022). PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in~ 200,000 patients. Breast Cancer Research, 24(1), 1-14. https://doi.org/10.1186/s13058-022-01567-3
van der Plas-Krijgsman, W. G.#, Giardiello, D.#, Putter, H., Steyerberg, E. W., Bastiaannet, E., Stiggelbout, A. M., … & de Glas, N. A. (2021). Development and validation of the PORTRET tool to predict recurrence, overall survival, and other-cause mortality in older patients with breast cancer in the Netherlands: a population-based study. The Lancet Healthy Longevity, 2(11), e704-e711. https://doi.org/10.1016/S2666-7568(21)00229-4
Giardiello, D., Hauptmann, M., Steyerberg, E. W., Adank, M. A., Akdeniz, D., Blom, J. C., … & Schmidt, M. K. (2020). Prediction of contralateral breast cancer: external validation of risk calculators in 20 international cohorts. Breast cancer research and treatment, 181(2), 423-434. https://doi.org/10.1007/s10549-020-05611-8
Giardiello, D., Steyerberg, E. W., Hauptmann, M., Adank, M. A., Akdeniz, D., Blomqvist, C., … & Schmidt, M. K. (2019). Prediction and clinical utility of a contralateral breast cancer risk model. Breast cancer research, 21(1), 1-13. https://doi.org/10.1186/s13058-019-1221-1
# authors contributed equally
Bozzetti, F., Cotogni, P., Lo Vullo, S., Pironi, L., Giardiello, D., & Mariani, L. (2015). Development and validation of a nomogram to predict survival in incurable cachectic cancer patients on home parenteral nutrition. Annals of Oncology, 26(11), 2335-2340.
Necchi, A., Sonpavde, G., Lo Vullo, S., Giardiello, D., Bamias, A., Crabb, S. J., … & RISC Investigators. (2017). Nomogram-based prediction of overall survival in patients with metastatic urothelial carcinoma receiving first-line platinum-based chemotherapy: retrospective international study of invasive/advanced cancer of the urothelium (RISC). European urology, 71(2), 281-289.
Huber, V., Di Guardo, L., Lalli, L., Giardiello, D., Cova, A., Squarcina, P., et al. (2021). Back to simplicity: a four-marker blood cell score to quantify prognostically relevant myeloid cells in melanoma patients. Journal for Immunotherapy of Cancer, 9(2). http://dx.doi.org/10.1136/jitc-2020-001167
Ferrari, A., Lo Vullo, S., Giardiello, D., Veneroni, L., Magni, C., Clerici, C. A., … & Mariani, L. (2016). The sooner the better? How symptom interval correlates with outcome in children and adolescents with solid tumors: regression tree analysis of the findings of a prospective study. Pediatric Blood & Cancer, 63(3), 479-485. https://doi.org/10.1002/pbc.25833